
Supplementary Material for the paper Finding Fixed-Length
Circuits and Cycles in Undirected Edge-Weighted Graphs: An

Application with Street Networks

R. Lewis1 and P. Corcoran2

1School of Mathematics, Cardiff University, CF24 4AX, Wales.
2School of Computer Science and Informatics, Cardiff University, CF24 4AX, Wales.

LewisR9|CorcoranP@cardiff.ac.uk

September 15, 2022

Abstract

This document contains supplemntary material for the paper:

• Lewis, R. and P. Corcoran (2022) “Finding Fixed-Length Circuits and Cycles in Undirected Edge-Weighted
Graphs: An Application with Street Networks” in Journal of Heuristics, vol. 28, pp. 259-285.
https://link.springer.com/content/pdf/10.1007/s10732-022-09493-5.pdf.

It contains further figures from the above paper and includes results for both circuits and cycles. It also gives instruc-
tions on how to compile and use the C++ algorithms described in the paper.

1 Algorithm Compilation and Usage
This section describes how to compile and use the algorithms proposed in the above publication. The implementations
have been written in C++ and are available for download at http://rhydlewis.eu/resources/kCircuit.zip.
The code can be compiled in Windows using Microsoft Visual Studio and in Linux using g++.

To compile and execute using Microsoft Visual Studio the following steps can be taken:

1. Open Visual Studio and click File, then New, and then Project from Existing Code.
2. In the dialogue box, select Visual C++ and click Next.
3. Select the subdirectory containing the source code and click Next.
4. Finally, select Console Application Project for the project type, and then click Finish.

The source code can then be viewed and executed from the Visual Studio application. Release mode should be used
during compilation to allow the program execute at maximum speed.

To compile the source code in Linux, please use the included makefile.
Once generated, the executable file should be run from the command line. If the program is called with no argu-

ments, the following usage information will be printed to the screen.

Approximation Algorithms for finding an s-circuit/cycle of length k. (R. Lewis

2021, www.rhydlewis.eu)

If a k-length solution is not found , lower - and upper -bound candidate solutions

are output.

Usage:

-i <string > (Required. Must define a file in the recognised format -- see the

documentation for further details .)

-k <int > (Desired length (default = 1000) .)

-s <int > (Source Vertex (default = 0).)

-c <int > (Solution choice

1: Circuit (default)

2: Cycle.)

-a <int > (Solution generation algorithm:

1: Double -path heuristic w/ filtering: choose furthest remaining

vertex at each step (default)

1

2: Double -path heuristic w/ filtering: choose closest remaining

vertex at each step

3: Double -path heuristic w/ filtering: choose random remaining

vertex at each step

4: Double -path heuristic w/o filtering: choose random remaining

vertex at each step

5: Make a random circuit/cycle (uses Option 4, but halts with

the first observed solution)

6: Split s into <s> and <s’> and run Yen ’s algorithm until an

s-s’-path of length k has been reached)

7: Make a long(ish) circuit/cycle (uses Option 1 and halts with

first observed solution).)

-r <int > (Random seed (default = 1).)

-LS <int > (Once a solution has been formed using the option selected with ’-a’,

carry out local search using one of these options:

0: Do not do any local search (default)

1: Use Dijkstra ’s algorithm with local search until a local optimum

is reached

2: Use BFS with local search until a local optimum is reached

3: Use BFS with local search until a local optimum is reached then ,

from this , use Dijkstra ’s algorithm with LS until a local optimum

is reached).

-sp <int > (Shortest path algorithm to be used with double -path heuristic:

1: Moore ’s BFS shortest path algorithm

2: Modified Dijkstra ’s algorithm (default))

-v (Verbosity. If present , output is sent to the console. If -v is

repeated , more output is given .)

-o (If present , remove all degree -one vertices before running the chosen

algorithm .)

-h (If present , the double path heuristic halts as soon (and if) a

solution with length k is found .)

NOTES: * When option ’-a 6’ is used (Yen ’s algorithm):

- The file <YenEppstein.jar > should be in the same folder as this

executable

- The program will run for a maximum of 30 minutes. In this case

it will halt with the best solution found.

- The parameters -c, -sp, -h, -r, and -LS have no effect. Only cycles

are considered.

- Dummy vertices and edges are introduced for every articulation point.

This means that in the original graph there may be non -bridge edges

that are used twice (this will not be picked up by the solution

checker due to the dummies). The solutions from this algorithm are

therefore not subject to the same constraints as the other algorithms.

The algorithm can also be VERY slow for large values of -k

The above provides the information needed to produce valid commands for executing the algorithm at the command
prompt. Further information on these parameters can be found by consulting the above publication.

Here is an example command.

kcircuit -i planar.txt

This will execute the algorithm on the supplied problem instance planar.txt using the default settings (as specified
above). Here is another valid command:

kcircuit -i planar.txt -k 5000 -c 2 -a 1 -v -v

This will operate similarly to the previous example, but the algorithm is executed using k = 5000, considers cycles
instead of circuits, uses the double path heuristic (with filtering and furthest-first vertex selection) and produces a
moderate amount of output to the console.

1.1 Input Format
The input file specified by -i in the above commands contains the problem instance. This is the only mandatory
argument. The format of the input files is a text file based on the DIMACS format. Initial lines in the text file will
begin with the character c. These are used for comments but are otherwise ignored.

2

After the comments, the next line in the file should start with the character p. This is followed by the number of
vertices n and edges m. Next, there follows a series of n lines starting with the character v, specifying text labels for
each vertex. The first label is associated with the vertex with index 0, the second with vertex index 1, and so on.

Finally, there follows a series of m lines beginning with the character e. Each of these lines specifies a single
edge of the graph by giving its two endpoints and its (nonnegative) edge weight. Endpoints are given using the vertex
indices 0, . . . , n − 1. Note that each edge e u v w should appear exactly once in the input file. It is therefore not
repeated as e v u w.

The following example shows parts of the supplied problem file planar.txt. This contains n = 40, 000 vertices
and m = 50, 000 edges. The vertex labels and indices are equivalent here.

c This is a random , connected , edge -weighted planar graph

c Number of nodes = 40000

c Number of edges = 50000

p 40000 50000

v 0

v 1

v 2

...

v 39998

v 39999

e 0 17724 22

e 0 24110 10

e 0 5390 40

e 0 11778 37

e 0 4012 32

...

1.2 Output Format
In addition to any output written to the console, output text files are also produced by this program. The first of these
contains the two best solutions found by the algorithm, corresponding to the upper and lower bounds. If a solution
of length k has been found, then just one solution is returned. The solution(s) are contained in a list of lists, where
each list is a sequence of the vertices specifying a circuit or cycle. Items between the commas in these lists refer to the
vertex labels specified in the input file.

Here is some example output corresponding to the supplied input file planar.txt. This specifies two solutions that
both start and end at the vertex with label 0.

[

[0, 5390, 1274, 28494, 2171, 20661, 28562, 4886, 33346, 11746, 4817, 29992, 19491,

10188, 14817, 11254, 14178, 31612, 20907, 1180, 24621, 1477, 34684, 231,

20943, 37224, 6004, 20560, 1558, 17712, 2502, 4984, 34829, 10306, 11235, 8718,

11573, 38046, 13083, 16477, 5941, 7558, 16055, 7558, 32028, 19906, 7216, 9594,

28927, 36226, 1034, 3093, 38362, 7746, 4360, 7050, 18431, 4216, 7749, 34676,

8351, 34875, 23155, 11097, 5231, 5534, 21475, 12009, 3263, 13162, 26614, 1015,

38076, 2171, 28494, 1274, 5390, 24110, 0],

[0, 5390, 1274, 28494, 2171, 16101, 14713, 24223, 39495, 11355, 8763, 13044,

26196, 328, 34874, 6756, 8681, 9238, 9079, 17137, 15040, 5424, 1481, 36190,

6069, 3077, 7787, 3776, 11407, 4779, 8490, 6995, 10409, 2106, 33896, 16874,

9168, 1181, 14399, 7327, 15379, 7327, 35555, 29097, 2677, 32050, 38208, 1989,

11328, 9426, 30830, 5224, 11978, 25437, 19754, 5079, 2785, 3800, 10234, 2385,

4231, 32460, 6179, 5923, 6350, 34746, 4633, 17061, 4566, 31633, 1215, 6809,

30963, 28622, 4886, 28562, 20661, 2171, 28494, 1274, 5390, 24110, 0]

]

Each time the algorithm terminates, a single line of information is also written to the text file resLog.txt. This
contains a record of all of the input parameters, together with information on the resultant solutions and run times (in
seconds). In order, these are:

1. Input file name -i
2. Number of vertices in the input file
3. Number of edges in the input file
4. Source vertex -s

5. Target length -k

6. Solution choice -c

3

7. Shortest path algorithm used -sp

8. Algorithm choice -a
9. Removal of degree-one vertices? -o

10. Random seed -r

11. Specified verbosity -v

12. Should the algorithm halt at the optimal? -h
13. Local search option -LS

14. Number of vertices in the reduced graph
15. Number of edges in the reduced graph
16. Number of dummy vertices that were added
17. Number of iterations performed by algorithm -a

18. Lower bound after execution of algorithm -a

19. Upper bound after execution of algorithm -a

20. Time at which the best gap was found by algorithm -a

21. Execution time of algorithm -a

22. Lower bound after execution of local search -LS

23. Upper bound after execution of local search -LS

24. Number of calls to the shortest path algorithm made by local search
25. Overall run time.

1.3 Software Copyright Notice
This software is provided by the contributors “as is” and any express or implied warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall
the contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption)
however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. This
software is supplied without any support services.

1.4 Data Sets
The data sets used to generate the results reported in the above paper are also included with the source code at the link
above. These are stored as comma separated value (csv) files. The data from these files was used to generate the charts
and tables below.

4

2 Double Path Heuristic
The figures in this section correspond to the results given in Section 4.2 of the above paper. Here, results for cycles are
included in addition to those of circuits.

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

G
ap

 (
m

et
er

s)

S
uc

ce
ss

 R
at

e

k

Gap (meters)
Success Rate

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

G
ap

 (
m

et
er

s)

S
uc

ce
ss

 R
at

e

k

Gap (meters)
Success Rate

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

G
ap

 (
m

et
er

s)

S
uc

ce
ss

 R
at

e
k

Gap (meters)
Success Rate

Figure 1: The shaded areas show the gap (in meters) between the two solutions returned by the double path heuristic
for differing values of k (using circuits). The lines show the corresponding success rates. Each point is the mean across
twenty problem instances for, respectively, sparse, medium, and dense planar graphs.

5

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

G
ap

 (
m

et
er

s)

S
uc

ce
ss

 R
at

e

k

Gap (meters)
Success Rate

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

G
ap

 (
m

et
er

s)

S
uc

ce
ss

 R
at

e

k

Gap (meters)
Success Rate

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

G
ap

 (
m

et
er

s)

S
uc

ce
ss

 R
at

e

k

Gap (meters)
Success Rate

Figure 2: This shows the same information as Figure 1, but considers cycles instead of circuits.

k = 1000 k = 5000 k = 10, 000
City LB−k UB−k CPU Time (s) LB−k UB−k CPU Time (s) LB−k UB−k CPU Time (s)

Circuits
London -1.2 1.8 0.046 ± 0.016 -0.1 0.1 11.835 ± 0.867 0.0 0.0 193.484 ± 9.511
Melbourne -1.4 2.1 0.031 ± 0.016 -0.1 0.1 8.285 ± 1.591 -0.2 0.2 63.800 ± 7.236
Amsterdam -3.1 3.0 0.010 ± 0.003 -0.7 0.9 1.997 ± 0.264 -0.4 0.4 21.682 ± 2.009
New York -5.7 4.9 0.004 ± 0.001 -0.4 0.5 2.116 ± 0.253 -0.2 0.2 25.934 ± 2.099
Kolkata -6.1 9.2 0.002 ± 0.001 -1.3 1.0 0.976 ± 0.176 -0.5 0.5 13.038 ± 1.388

Circuits (Remove degree-1 vertices)
London -2.2 3.8 0.022 ± 0.008 -0.7 0.6 3.518 ± 0.324 -0.3 0.3 48.219 ± 3.425
Melbourne -3.4 4.9 0.014 ± 0.008 -0.3 0.3 3.564 ± 1.376 -0.4 0.4 22.935 ± 5.215
Amsterdam -5.7 5.3 0.006 ± 0.002 -1.1 1.2 0.893 ± 0.132 -0.6 0.8 7.924 ± 0.791
New York -9.7 8.4 0.003 ± 0.001 -0.4 0.7 1.089 ± 0.193 -0.3 0.3 13.983 ± 1.534
Kolkata -13.9 14.3 0.001 ± 0.001 -1.8 1.8 0.485 ± 0.107 -1.3 1.2 4.604 ± 0.622

Cycles
London -1.2 1.9 0.057 ± 0.019 -0.1 0.2 12.023 ± 0.871 0.0 0.0 180.077 ± 8.460
Melbourne -1.4 2.6 0.034 ± 0.017 -0.1 0.1 8.343 ± 1.582 -0.2 0.2 60.317 ± 6.881
Amsterdam -2.9 2.9 0.012 ± 0.004 -0.6 0.8 2.031 ± 0.264 -0.5 0.5 21.991 ± 1.916
New York -5.2 4.6 0.005 ± 0.001 -0.3 0.4 2.126 ± 0.243 -0.1 0.1 25.056 ± 1.797
Kolkata -6.6 8.9 0.003 ± 0.001 -1.5 0.9 1.022 ± 0.182 -0.4 0.3 13.261 ± 1.420

Cycles (Remove degree-1 vertices)
London -2.4 4.4 0.027 ± 0.011 -0.5 0.6 3.621 ± 0.328 -0.3 0.2 45.266 ± 2.991
Melbourne -3.2 4.9 0.015 ± 0.009 -0.3 0.3 3.626 ± 1.345 -0.4 0.3 22.064 ± 4.960
Amsterdam -5.6 5.6 0.006 ± 0.002 -1.0 1.1 0.924 ± 0.135 -0.7 0.9 8.085 ± 0.866
New York -9.1 7.0 0.003 ± 0.001 -0.4 0.6 1.102 ± 0.183 -0.1 0.1 13.466 ± 1.479
Kolkata -15.8 15.4 0.002 ± 0.001 -2.2 1.4 0.521 ± 0.116 -1.1 1.3 4.737 ± 0.652

Table 1: Accuracy and speed of the double path heuristic on five cities. Each figure is a mean across 50 runs using a
randomly selected source vertex within 1 km of the city centre.

6

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

Figure 3: Run times for differing variants of the double path heuristic (for circuits) using various values of k for
(respectively) sparse, medium, and dense planar graphs. All points are the mean across twenty problem instances.

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

Figure 4: This shows the same results as Figure 3, but considers cycles instead of circuits.

7

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

Figure 5: Times at which the best gap was achieved for differing variants of the double path heuristic using circuits.
Experimental details are the same as those in Figure 3.

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

Figure 6: This shows the same results as Figure 5, but considers cycles instead of circuits.

8

3 Local Search Heuristic
The figures in this section correspond to the results given in Section 4.3 of the above paper. Results for cycles are
included in addition to those of circuits.

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (
U

B
 −

 L
B

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (
U

B
 −

 L
B

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (
U

B
 −

 L
B

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

Figure 7: Accuracy of the double path and three local search heuristics for differing values of k using (respectively)
sparse, medium, and dense planar graphs. All points are the mean across 100 problem instances. (Circuits)

9

k Double-Path Double-Path + LS Furthest + LS Furthest + LS (BFS)
Sparse
1000 25.20 ± 79.27 16.64 ± 42.39 39.15 ± 54.65 39.52 ± 54.85
2500 4.20 ± 4.70 2.40 ± 3.35 4.71 ± 5.19 5.74 ± 6.57
4500 1.86 ± 2.78 1.00 ± 1.94 1.55 ± 2.51 1.56 ± 2.41
7500 0.66 ± 1.19 0.15 ± 0.56 0.48 ± 1.02 0.54 ± 1.12

10000 0.24 ± 0.65 0.04 ± 0.28 0.11 ± 0.49 0.09 ± 0.45
Medium
1000 4.87 ± 4.61 2.06 ± 2.51 2.78 ± 3.26 3.59 ± 4.26
2500 1.87 ± 2.10 0.60 ± 1.21 0.42 ± 1.03 0.42 ± 0.97
4500 0.56 ± 1.15 0.10 ± 0.44 0.08 ± 0.39 0.00 ± 0.00
7500 0.17 ± 0.59 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

10000 0.05 ± 0.36 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Dense
1000 2.98 ± 3.02 1.02 ± 1.50 1.47 ± 2.29 1.59 ± 2.63
2500 0.90 ± 1.42 0.27 ± 0.76 0.22 ± 0.84 0.06 ± 0.34
4500 0.19 ± 0.61 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
7500 0.06 ± 0.34 0.02 ± 0.20 0.00 ± 0.00 0.00 ± 0.00

10000 0.04 ± 0.28 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table 2: Accuracy of the double-path and three local search heuristics for differing values of k using sparse, medium,
and dense planar graphs with circuits. Entries correspond to a selection of those shown in Figure 7 and show the mean
across 100 problem instances, plus/minus the standard deviation.

k Double-Path Double-Path + LS Furthest + LS Furthest + LS (BFS)
Sparse
1000 26.09 ± 79.72 16.86 ± 42.51 51.43 ± 112.00 51.74 ± 111.96
2500 4.93 ± 5.61 2.67 ± 3.32 5.56 ± 5.80 6.13 ± 6.81
4500 1.50 ± 2.08 0.64 ± 1.13 1.61 ± 2.37 1.95 ± 3.07
7500 0.48 ± 1.02 0.18 ± 0.64 0.86 ± 1.65 0.52 ± 1.20

10000 0.27 ± 0.71 0.08 ± 0.39 0.42 ± 0.96 0.21 ± 0.64
Medium
1000 6.03 ± 5.35 3.22 ± 3.59 5.98 ± 7.28 5.42 ± 6.06
2500 1.47 ± 2.09 0.50 ± 1.01 0.58 ± 1.44 1.02 ± 2.28
4500 0.52 ± 1.07 0.12 ± 0.48 0.04 ± 0.28 0.14 ± 0.59
7500 0.17 ± 0.59 0.00 ± 0.00 0.03 ± 0.30 0.00 ± 0.00

10000 0.06 ± 0.34 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.20
Dense
1000 2.25 ± 2.50 1.12 ± 1.71 2.21 ± 3.00 3.47 ± 4.05
2500 0.73 ± 1.32 0.23 ± 0.66 0.29 ± 0.89 0.36 ± 1.06
4500 0.28 ± 0.83 0.06 ± 0.34 0.04 ± 0.28 0.06 ± 0.34
7500 0.02 ± 0.20 0.00 ± 0.00 0.02 ± 0.20 0.00 ± 0.00

10000 0.04 ± 0.28 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table 3: This shows the same information as Table 2, but considers cycles instead of circuits.

10

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (
U

B
 −

 L
B

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (
U

B
 −

 L
B

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (
U

B
 −

 L
B

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

Figure 8: This shows the same results as Figure 7, but considers cycles instead of circuits.

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

Figure 9: Mean execution times of the trials given in Figure 7 for (respectively) sparse, medium, and dense problem
instances.

11

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
P

U
 T

im
e

(s
)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

Figure 10: Mean execution times of the trials given in Figure 8 for (respectively) sparse, medium, and dense problem
instances.

12

k = 1000 k = 5000 k = 10, 000
City LB−k UB−k CPU Time (s) LB−k UB−k CPU Time (s) LB−k UB−k CPU Time (s)

Double Path + LS
London -0.4 1.0 0.034 ± 0.020 0.0 0.0 2.947 ± 3.071 0.0 0.0 23.795 ± 12.616
Melbourne -0.7 0.6 0.014 ± 0.016 0.0 0.0 2.080 ± 2.586 0.0 0.0 13.234 ± 20.040
Amsterdam -0.8 0.7 0.010 ± 0.005 0.0 0.0 0.983 ± 0.763 0.0 0.0 8.913 ± 8.031
New York -2.1 1.5 0.005 ± 0.003 0.0 0.0 0.830 ± 0.862 0.0 0.0 7.708 ± 8.425
Kolkata -4.3 4.6 0.003 ± 0.001 -0.2 0.2 0.622 ± 0.429 0.0 0.0 6.209 ± 5.448

Furthest + LS
London -0.8 0.5 0.010 ± 0.007 0.0 0.0 0.150 ± 0.169 0.0 0.0 0.641 ± 1.004
Melbourne -0.9 2.4 0.006 ± 0.005 0.0 0.0 0.129 ± 0.130 0.0 0.0 0.676 ± 1.015
Amsterdam -1.2 1.3 0.004 ± 0.002 0.0 0.0 0.071 ± 0.074 0.0 0.0 0.217 ± 0.212
New-York -8.6 2.3 0.003 ± 0.002 0.0 0.0 0.061 ± 0.063 0.0 0.0 0.146 ± 0.113
Kolkata -16.1 11.6 0.002 ± 0.001 -0.1 0.1 0.060 ± 0.058 -0.1 0.1 0.246 ± 0.248

Furthest + LS using BFS
London -0.9 0.5 0.004 ± 0.003 0.0 0.0 0.053 ± 0.046 0.0 0.0 0.254 ± 0.234
Melbourne -0.7 2.0 0.003 ± 0.002 0.0 0.0 0.044 ± 0.041 0.0 0.0 0.235 ± 0.324
Amsterdam -1.9 1.1 0.002 ± 0.001 0.0 0.0 0.023 ± 0.017 0.0 0.0 0.084 ± 0.092
New-York -5.2 2.7 0.002 ± 0.001 0.0 0.0 0.022 ± 0.019 0.0 0.0 0.076 ± 0.048
Kolkata -15.4 13.5 0.001 ± 0.001 -0.2 0.2 0.023 ± 0.020 -0.1 0.1 0.088 ± 0.074

Double Path + LS (Remove degree-1 vertices)
London -0.5 1.6 0.021 ± 0.012 0.0 0.0 1.751 ± 1.314 0.0 0.0 19.726 ± 16.717
Melbourne -0.6 0.6 0.009 ± 0.009 0.0 0.0 1.627 ± 1.854 0.0 0.0 8.397 ± 9.301
Amsterdam -1.1 1.1 0.007 ± 0.003 0.0 0.0 0.541 ± 0.338 0.0 0.0 4.265 ± 3.009
New York -1.4 1.2 0.003 ± 0.002 0.0 0.0 0.511 ± 0.459 0.0 0.0 6.005 ± 4.643
Kolkata -8.6 5.6 0.002 ± 0.001 -0.2 0.2 0.376 ± 0.228 -0.1 0.1 3.169 ± 1.899

Furthest + LS (Remove degree-1 vertices)
London -1.2 0.4 0.008 ± 0.007 0.0 0.0 0.119 ± 0.097 0.0 0.0 0.313 ± 0.275
Melbourne -1.4 1.6 0.005 ± 0.004 0.0 0.0 0.096 ± 0.098 0.0 0.0 0.463 ± 0.745
Amsterdam -1.5 1.0 0.003 ± 0.002 0.0 0.0 0.062 ± 0.067 0.0 0.0 0.264 ± 0.292
New-York -5.4 2.0 0.003 ± 0.002 0.0 0.0 0.053 ± 0.052 0.0 0.0 0.127 ± 0.095
Kolkata -16.3 11.7 0.002 ± 0.001 -0.1 0.2 0.053 ± 0.048 -0.1 0.1 0.244 ± 0.302

Furthest + LS using BFS (Remove degree-1 vertices)
London -1.3 0.5 0.004 ± 0.003 0.0 0.0 0.041 ± 0.037 0.0 0.0 0.188 ± 0.178
Melbourne -2.6 1.7 0.003 ± 0.002 0.0 0.0 0.030 ± 0.028 0.0 0.0 0.153 ± 0.210
Amsterdam -2.7 1.5 0.002 ± 0.001 0.0 0.0 0.017 ± 0.012 0.0 0.0 0.075 ± 0.078
New-York -7.4 2.7 0.002 ± 0.001 0.0 0.0 0.024 ± 0.023 0.0 0.0 0.064 ± 0.046
Kolkata -16.5 13.2 0.001 ± 0.001 -0.1 0.2 0.023 ± 0.019 0.0 0.0 0.083 ± 0.108

Table 4: Accuracy and speed of the LS heuristic on five cites (using circuits). Each figure is a mean across 50 runs
using randomly selected source vertices within 1 km of the city centre.

13

k = 1000 k = 5000 k = 10, 000
City LB−k UB−k CPU Time (s) LB−k UB−k CPU Time (s) LB−k UB−k CPU Time (s)

Double Path + LS
London -0.5 1.1 0.039 ± 0.023 0.0 0.0 2.961 ± 3.235 0.0 0.0 20.708 ± 11.396
Melbourne -0.6 0.7 0.017 ± 0.019 0.0 0.0 2.133 ± 2.749 0.0 0.0 13.282 ± 20.467
Amsterdam -0.8 0.7 0.011 ± 0.006 -0.1 0.0 1.036 ± 0.791 0.0 0.0 10.013 ± 8.914
New-York -2.7 2.1 0.005 ± 0.003 0.0 0.0 0.770 ± 0.813 0.0 0.0 6.241 ± 6.614
Kolkata -5.4 5.7 0.003 ± 0.001 -0.4 0.5 0.706 ± 0.451 -0.1 0.1 5.999 ± 5.260

Furthest + LS
London -0.7 2.4 0.012 ± 0.008 0.0 0.0 0.319 ± 0.284 0.0 0.0 1.773 ± 1.734
Melbourne -1.3 2.7 0.009 ± 0.007 0.0 0.0 0.295 ± 0.249 0.0 0.0 0.937 ± 1.184
Amsterdam -1.6 1.2 0.006 ± 0.003 0.0 0.0 0.105 ± 0.076 0.0 0.0 0.678 ± 0.637
New-York -9.3 9.9 0.004 ± 0.002 0.0 0.0 0.115 ± 0.099 0.0 0.0 0.355 ± 0.514
Kolkata -17.4 13.8 0.002 ± 0.001 -0.1 0.1 0.089 ± 0.073 -0.3 0.2 0.422 ± 0.401

Furthest + LS using BFS
London -0.7 2.5 0.005 ± 0.003 0.0 0.0 0.059 ± 0.042 0.0 0.0 0.449 ± 0.443
Melbourne -1.1 2.5 0.004 ± 0.003 0.0 0.0 0.085 ± 0.077 0.0 0.0 0.304 ± 0.349
Amsterdam -2.2 1.2 0.003 ± 0.002 0.0 0.0 0.046 ± 0.035 0.0 0.0 0.187 ± 0.196
New-York -6.7 9.6 0.002 ± 0.001 0.0 0.0 0.043 ± 0.037 0.0 0.0 0.108 ± 0.119
Kolkata -17.4 13.8 0.002 ± 0.001 -0.2 0.3 0.033 ± 0.024 -0.1 0.1 0.142 ± 0.170

Double Path + LS (Remove degree-1 vertices)
London -0.6 0.6 0.024 ± 0.013 0.0 0.0 1.814 ± 1.397 0.0 0.0 16.034 ± 14.259
Melbourne -0.7 0.7 0.010 ± 0.010 0.0 0.0 1.529 ± 1.934 0.0 0.0 7.901 ± 8.866
Amsterdam -1.6 1.5 0.008 ± 0.003 -0.1 0.0 0.588 ± 0.360 0.0 0.0 4.645 ± 3.107
New-York -2.7 2.5 0.004 ± 0.002 0.0 0.0 0.529 ± 0.455 0.0 0.0 4.689 ± 3.725
Kolkata -10.1 7.0 0.002 ± 0.001 -0.7 0.5 0.427 ± 0.247 -0.1 0.2 3.220 ± 1.916

Furthest + LS (Remove degree-1 vertices)
London -0.7 2.9 0.011 ± 0.007 0.0 0.0 0.215 ± 0.206 0.0 0.0 1.022 ± 1.003
Melbourne -1.7 1.6 0.007 ± 0.006 0.0 0.0 0.238 ± 0.214 0.0 0.0 0.984 ± 1.098
Amsterdam -2.2 1.4 0.005 ± 0.003 0.0 0.0 0.117 ± 0.086 0.0 0.0 0.484 ± 0.433
New-York -12.3 9.1 0.003 ± 0.002 0.0 0.0 0.095 ± 0.087 0.0 0.0 0.311 ± 0.402
Kolkata -20.6 13.6 0.002 ± 0.001 -0.2 0.1 0.067 ± 0.054 -0.1 0.1 0.371 ± 0.328

Furthest + LS using BFS (Remove degree-1 vertices)
London -0.6 2.4 0.005 ± 0.003 0.0 0.0 0.062 ± 0.053 0.0 0.0 0.283 ± 0.288
Melbourne -1.2 1.4 0.003 ± 0.002 0.0 0.0 0.066 ± 0.062 0.0 0.0 0.289 ± 0.319
Amsterdam -1.8 2.2 0.003 ± 0.001 -0.1 0.0 0.034 ± 0.030 0.0 0.0 0.151 ± 0.150
New-York -9.2 9.1 0.002 ± 0.001 0.0 0.0 0.040 ± 0.032 0.0 0.0 0.109 ± 0.127
Kolkata -20.0 14.3 0.001 ± 0.001 -0.3 0.2 0.027 ± 0.024 -0.1 0.1 0.118 ± 0.110

Table 5: Accuracy and speed of the LS heuristic on five cites (using cycles). Each figure is a mean across 50 runs using
randomly selected source vertices within 1 km of the city centre.

14

4 Random Graphs
The figures in this section correspond to the results given in Section 4.4 of the above paper. Results for cycles are
included in addition to those of circuits.

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 200

 400

 600

 800

 1000

k Density

G
ap

 (
m

et
er

s)

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 200

 400

 600

 800

 1000

k Density

G
ap

 (
m

et
er

s)

Figure 11: Accuracy of the local search algorithms for circuits, using random graphs of varying densities and different
values of k. Accuracy is measured using the difference between the lower and upper bound, averaged across 20
instances. The first chart shows the local search algorithm based on BFS; the second shows the algorithm augmented
with a second step of local search using shortest paths.

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 5

k Density

C
P

U
 ti

m
e

(s
ec

)

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 5

k Density

C
P

U
 ti

m
e

(s
ec

)

Figure 12: Mean execution times of the local search algorithms using random graphs of varying densities, for different
values of k. Other details are the same as Figure 11.

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 20000

 40000

 60000

k Density

G
ap

*
(m

et
er

s)

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 20000

 40000

 60000

k Density

G
ap

*
(m

et
er

s)

Figure 13: Accuracy of the local search algorithms for cycles, using random graphs of varying densities and different
values of k. Accuracy is measured using the difference between the lower and upper bound, averaged across 20
instances. The first chart shows the local search algorithm based on BFS; the second shows the algorithm augmented
with a second step of local search using shortest paths.

15

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 5

k Density

C
P

U
 ti

m
e

(s
ec

)

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 100

 200

 300

k Density

C
P

U
 ti

m
e

(s
ec

)

Figure 14: Mean execution times of the local search algorithms using random graphs of varying densities, for different
values of k. Other details are the same as Figure 13.

16

